102,698 research outputs found

    Geometric model for the critical-value problem of nucleation phenomena containing the size effect of nucleating agent

    Get PDF
    Nucleation is of great concern in many cases—for example, the production of artificial rainfall and the synthesis of advanced amorphous alloys. Although exact solutions have been well known to both homogeneous nucleation and heterogeneous nucleation occurring on a large flat container wall, yet in more general situations the actual nucleation takes place around finite-sized heterogeneous particles. The understanding of nucleation in such situations requires a more extended model which considers the size effect of nucleating agents. Partially motivated by our research on bulk metallic glasses, we construct such a geometric model. Also we derive an exact solution to the model and discuss briefly its physical implications. A previously presumed relation between the critical energy barrier (Ec) and the volumetric Gibbs free energy of the critical nucleus (Gc)—i.e., Ec=(1/2)Gc—is found to be not true for general cases, although it is correct for the limiting cases

    On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space II

    Full text link
    Let uu be a smooth convex function in Rn\mathbb{R}^{n} and the graph MuM_{\nabla u} of u\nabla u be a space-like translating soliton in pseudo-Euclidean space Rn2n\mathbb{R}^{2n}_{n} with a translating vector 1n(a1,a2,,an;b1,b2,,bn)\frac{1}{n}(a_{1}, a_{2}, \cdots, a_{n}; b_{1}, b_{2}, \cdots, b_{n}), then the function uu satisfies detD2u=exp{i=1naiuxi+i=1nbixi+c}onRn \det D^{2}u=\exp \left\{ \sum_{i=1}^n- a_i\frac{\partial u}{\partial x_{i}} +\sum_{i=1}^n b_ix_i+c\right\} \qquad \hbox{on}\qquad\mathbb R^n where aia_i, bib_i and cc are constants. The Bernstein type results are obtained in the course of the arguments.Comment: 9 page

    Measurement of surface potential decay of corona-charged polymer films using the pulsed electroacoustic method

    No full text
    In this paper, the pulsed electroacoustic (PEA) technique that allows the determination of space charge in a dielectric material has been used to monitor the electrical potential decay of corona-charged polyethylene films of different thicknesses. To prevent possible disturbance on the surface charge during the PEA measurements, two thin polyethylene films were placed on both sides of the corona-charged sample. Charge profiles measured at different times were used to calculate the potential across the sample. The obtained potential decay was compared with the potential measured using the conventional method. A good agreement has been obtained. More importantly, the charge profile obtained using the PEA technique indicates that bipolar charge injection has taken place

    Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields

    Full text link
    A detailed theoretical study is presented for the influence of linearly polarised intense terahertz (THz) laser radiation on energy states of hydrogen-like impurities in semiconductors. The dependence of the binding energy for 1s and 2p states on intensity and frequency of the THz radiation has been examined.Comment: 14 pages, 4 figure

    Choosing new ways to chew

    Get PDF
    No abstract availabl

    Electronic properties of bilayer phosphorene quantum dots in the presence of perpendicular electric and magnetic fields

    Full text link
    Using the tight-binding approach, we investigate the electronic properties of bilayer phosphorene (BLP) quantum dots (QDs) in the presence of perpendicular electric and magnetic fields. Since BLP consists of two coupled phosphorene layers, it is of interest to examine the layer-dependent electronic properties of BLP QDs, such as the electronic distributions over the two layers and the so-produced layer-polarization features, and to see how these properties are affected by the magnetic field and the bias potential. We find that in the absence of a bias potential only edge states are layer-polarized while the bulk states are not, and the layer-polarization degree (LPD) of the unbiased edge states increases with increasing magnetic field. However, in the presence of a bias potential both the edge and bulk states are layer-polarized, and the LPD of the bulk (edge) states depends strongly (weakly) on the interplay of the bias potential and the interlayer coupling. At high magnetic fields, applying a bias potential renders the bulk electrons in a BLP QD to be mainly distributed over the top or bottom layer, resulting in layer-polarized bulk Landau levels (LLs). In the presence of a large bias potential that can drive a semiconductor-to-semimetal transition in BLP, these bulk LLs exhibit different magnetic-field dependences, i.e., the zeroth LLs exhibit a linear-like dependence on the magnetic field while the other LLs exhibit a square-root-like dependence.Comment: 11 pages, 6 figure
    corecore